ADAMS, COHEN, AND ROSENFELD

TABLE 1. Compositions of Garnets Studied

	1		2	3	4	5	6	
				Weight percent oxi	des			
SiO2 TiO2 A1203 Cr203 FeO MnO MgO CaO Total	37.77 0.00 21.11 0.00 35.11 2.24 4.53 0.39 101.15		38.25 0.00 21.55 0.04 26.09 2.32 9.47 1.92 99.64	43.04 0.38 22.94 0.18 10.17 0.30 19.02 4.87 100.90	42.30 0.14 22.19 1.89 8.84 0.35 19.03 5.16 99.90	36.43 0.00 20.64 0.00 18.65 24.29 0.00 0.32 100.33	39.23 0.19 21.80 0.00 1.84 0.45 0.00 34.76 98.27	
Si Al Cr Ti Mg Fe2+ Mn Ca	3.00 1.97 0.00 0.00 0.54 2.33 0.15 0.03	3.05	Number 2.97 1.97 0.00 0.00 1.10 1.69 0.15 0.16	of ions on the basis 3.04 1.91 0.01 0.02 2.00 3.10 0.60 0.02 0.37 2.99	of 12 oxygens 3.02 1.87 0.11 0.01 2.03 0.53 0.02 0.40 2.9	3.00 2.00 0.00 0.00 1.28 1.69 0.03 3.00	$\begin{array}{c} 3.01 \\ 1.97 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.12 \\ 0.03 \\ 2.86 \end{array} $ 3.	01
				Mol. percent compon	ents			
Fe3A12Si3O12 Ca3A12Si3O12 Mg3A12Si3O12 Mn3A12Si3O12 Ca3Cr2Si3O12	76.39 0.98 17.70 4.92 0.00		54.52 5.16 35.48 4.84 0.00	20.23 11.40 67.43 0.60 0.34	19.16 2.71 73.49 0.77 3.87	42.67 1.00 0.00 56.33 0.00	3.99 95.02 0.00 1.00 0.00	
		1. 2. 3.	Almandi Pyropic Pyrope	ne Source : F. Bir Almandine U.S.N.M U.S.N.M. #107062,	ch; locality un . #120315, Fort Alice Springs,	known Defiance, Arizona Australia		2

Cr-Pyrope -- UCLA Museum 3227D, Arizona

5. Spessartitic Almandine -- Verma #1 (Verma, 1960)

6. Grossular -- Asbestos, Quebec (J. Arem, Collector)

FIG. 1. Compositional tetrahedron for garnets used in comparison dilatometry. Numbers correspond to chemical analyses listed in Table 1.

the axis of the rod and the \perp to c (*i.e.*, for quartz \perp c $\sin^2\theta = 0$). It is easily seen that, in applying these results to thin sections, θ is the same angle as θ in the comparison dilatometry (see footnote 5).

Results for Pairs: Quartz and Pyropic, Spessartitic, and Grossularitic Garnet

Figures 5, 6, and 7 show data points for isomekes of quartz in the two principal orientations relative to pyropic (Table 1, #3), spessartitic (#5), and grossularitic (#6) garnets. Similar determinations, not illustrated because they are concordant, were made for garnets #2 and #4 of Figure 1 and Table 1. The solid curves in Figures 5, 6, and 7 are derived from interpolation equations presented below for isomekes of quartz-almandine-type garnet and are placed in the figures for purposes of comparison.

Discussion and Synthesis

The most useful results to petrology that stem from this comparison dilatometry are: (1) experimentally-

588

FiG. 2. Data for isomekes between almandine-type garnet (No. 1 in Table 1) and quartz in a direction $\perp c$. Solid lines based on numerical analysis discussed in text. Type of dilatometer (see Part I) used: 1, 2, 4, 5-"gate" (antimony-doped silicon gate); 3-"gate" (gate of chrome-coated synthetic sapphire); 6-"gate" (WC gate).

FIG. 3. Data for isomekes between almandine-type garnet (No. 1 in Table 1) and quartz in a direction 45° from c. Solid lines based on numerical analysis discussed in text. Type of dilatometer used: 1, 2, 5-"gate" (WC gate); 3, 4-"J".